Exploring technicolor from QCD

Yasumichi Aoki [Koboyashi-Maskawa institute, Nagoya University]

for the LatKMI collaboration

- RBRC workshop: New Horizons for Lattice Gauge Theory Computations -

May 16, 2012

LatKMI collaboration

YA, T.Aoyama, M.Kurachi, T.Maskawa, K.Nagai, H.Ohki,

K.Yamawaki, T.Yamazaki

💆 扁 名古屋大学

A.Shibata

- non-Abelian gauge theory with N_f massless fermions -

- non-Abelian gauge theory with N_f massless fermions -

- non-Abelian gauge theory with N_f massless fermions -

Walking Techinicolor could be realized just below the conformal window

- non-Abelian gauge theory with N_f massless fermions -

- Walking Techinicolor could be realized just below the conformal window
- crucial information: N_f^{crit} & mass anomalous dimension around N_f^{crit}

models being studied:

- SU(3)
 - fundamental: Nf=6, 8, 10, 12, 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6,(8,)10,(12)(16)
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6,(8,)10,(12)(16)
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

 $SU(3) + N_f=12$ [fundamental]

Hadron spectrum: m_f-response in mass deformed theory

- IR conformal phase:
 - coupling runs below $\mu=m_f$: like $n_f=0$ QCD with $\Lambda_{QCD}\sim m_f$
 - multi particle / glueball state : $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$
- S χ SB phase:
 - ChPT (but, large N_f, small F ⇔ real QCD)
 - hard to get to the chiral regime
 - at leading: $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c m_f$
 - so far no chiral logs are observed → polynomial in m_f

Simulation

- N_f=12 HISQ (Highly Improved Staggered Quarks)
- tree level Symanzik gauge
- $\beta = 6/g^2 = 3.7$, $V = L^3xT$: L/T = 3/4; $L = 18, 24, 30, 0.04 \le m_f \le 0.2$
- $\beta = 6/g^2 = 4.0$, $V = L^3xT$: L/T = 3/4; L = 18, 24, 30, $0.05 \le m_f \le 0.24$
- $N_{f}=4$ HISQ for the reference of S χ SB for comparison

using MILC code v7 with some modifications

staggered flavor symmetry for N_f=12 HISQ

• comparing mesonic mass with local PS and V operators for β =3.7

N_f=12: HISQ

 $N_f=4$: HISQ $\beta=3.7$

• β=3.7: small mass: consistent with hyper-scaling

N_f=12: HISQ

 $N_f=4$: HISQ $\beta=3.7$

- β=3.7: small mass: consistent with hyper-scaling
- β =4.0: mass too heavy? inconsistent with being in the hyper-scaling region

N_f=12: HISQ

N_f=12: HISQ

N_f=12: HISQ

• β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)

N_f=12: HISQ

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

N_f=12: HISQ

one can attempt to perform a matching

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

N_f=12: HISQ

- one can attempt to perform a matching
- $a(\beta=3.7) > a(\beta=4.0)$

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

N_f=12: HISQ

- one can attempt to perform a matching
- $a(\beta=3.7) > a(\beta=4.0)$
 - movement: correct direction in asymptotically free domain!

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

conformal (finite size) scaling

- Scaling dimension at IR fixed point [Wilson-Fisher]; Hyper Scaling [Miransky]
- mass dependence is described by anomalous dimensions at IRFP
 - ullet quark mass anomalous dimension γ^*
 - operator anomalous dimension
- meson mass and pion decay constant obey same scaling

$$m_{\pi} = c_m m_f^{\frac{1}{1+\gamma^*}} \qquad f_{\pi} = c_f m_f^{\frac{1}{1+\gamma^*}}$$

• finite size scaling in a L⁴ box (DeGrand; Del Debbio et al)

• scaling variable:
$$x = L m_f^{\frac{1}{1+\gamma^*}}$$

$$L f_\pi = F(x) \qquad \qquad L m_\pi = G(x)$$

• γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

• $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$

γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear

γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)

γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)
- if ξ^j is away from $f(x_i)$ by $\delta \xi^j$ as average $\rightarrow P=1$

• γ of optimal alignment will minimize:

$$P_{p}(\gamma) = \frac{1}{N} \sum_{K} \sum_{j \notin K} \frac{|\xi_{p}^{j} - f_{p}^{(K)}(x_{j})|^{2}}{\delta^{2} \xi_{p}^{j}}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)
- if ξ^j is away from $f(x_i)$ by $\delta \xi^j$ as average $\rightarrow P=1$

to quantify the "alignment" without resorting to a model

γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)
- if ξ^j is away from $f(x_i)$ by $\delta \xi^j$ as average $\rightarrow P=1$
- optimal γ from the minimum of P

to quantify the "alignment" without resorting to a model

γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)
- if ξ^j is away from $f(x_i)$ by $\delta \xi^j$ as average $\rightarrow P=1$
- optimal γ from the minimum of P

• consistent γ by 1.5 σ level except for F_{π} at β =4.0

- consistent γ by 1.5 σ level except for F_{π} at β =4.0
- remember: F_{π} at β =4.0 speculated to be out of the scaling region

- consistent γ by 1.5 σ level except for F_{π} at β =4.0
- remember: F_{π} at β =4.0 speculated to be out of the scaling region
- universal low energy behavior: good with 0.4<γ*<0.5

Conformal type fit with finite volume correction

$$\xi = LM_{\pi}, \ LF_{\pi}, \ LM_{\rho}$$

$$\xi = c_0 + c_1 Lm_f^{1/(1+\gamma)} \cdot \cdot \cdot \text{ fit a,}$$

$$\xi = c_0 + c_1 Lm_f^{1/(1+\gamma)} + c_2 Lm_f^{\alpha} \cdot \cdot \cdot \text{ fit b.}$$
fit b-1 $0.417(10) \frac{(3-2\gamma)}{(1+\gamma)} = 1.88$
fit b-2 $0.431(8) = [2] = 1.83$

- simultaneous fit it with a leading mass dependent correction is not bad
 - b-1: Ladder Schwinger-Dyson, b-2: (am)² lattice artifact
- resulting γ is consistent with the model independent analysis

$$h(m_f) = \begin{cases} c_0 + c_1 m_f + c_2 m_f^2 & \dots \text{ fit 1} \\ c_0 + c_1 m_f + c_2 m_f^2 + c_3 m_f^3 & \dots \text{ fit 2} \end{cases}$$

fit range	c_0	c_1	c_2	c_3	$\chi^2/{ m dof}$
fit 1: [0.04, 0.08]	0.0101(54)	1.53(19)	-4.8(1.5)	-	2.09
fit 1: [0.04, 0.1]	0.0138(29)	1.39(88)	-3.62(61)	-	1.39
fit 1: [0.04, 0.12]	0.0226(17)	1.113(45)	-1.64(27)	-	5.42
fit 2 : [0.04, 0.16]	0.0182(34)	1.28(13)	-3.4(1.3)	6.0(4.2)	4.75

• 2nd order polynomial fit is reasonably good for small mass range & c₀>0

2nd order polynomial fit is reasonably good for small mass range & c₀>0

$$M_{\pi}^{2} = h(m_{f}) = \begin{cases} c_{0} + c_{1}m_{f} + c_{2}m_{f}^{2} & \dots \text{ fit 1} \\ c_{0} + c_{1}m_{f} + c_{2}m_{f}^{2} + c_{3}m_{f}^{3} & \dots \text{ fit 2} \end{cases}$$

fit range	c_0	c_1	c_2	c_3	χ^2/do
fit 1: [0.04, 0.08]	-0.0090(93)	1.95(32)	14.2(2.6)	-	0.16
	[0]	1.640(31)	16.68(47)	-	0.56
fit 1: [0.04, 0.1]	-0.0232(50)	2.46(16)	9.9(1.1)	-	1.75
	[0]	1.754(21)	14.73(25)	-	8.54
fit 1: [0.04, 0.12]	-0.0174(31)	2.27(85)	11.32(52)	-	1.93
	[0]	1.801(16)	14.09(16)	-	9.36
fit $2:[0.04,0.16]$	-0.0044(61)	1.69(22)	19.1(2.4)	-32.9(7.6)	3.28
	[0]	1.537(29)	20.76(53)	-38.2(2.3)	2.59

• wide range fit ends up c₀<0

$$M_{\pi}^{2} = h(m_{f}) = \begin{cases} c_{0} + c_{1}m_{f} + c_{2}m_{f}^{2} & \dots \text{ fit 1} \\ c_{0} + c_{1}m_{f} + c_{2}m_{f}^{2} + c_{3}m_{f}^{3} & \dots \text{ fit 2} \end{cases}$$

fit range	c_0	c_1	c_2	c_3	$\chi^2/{ m dof}$
fit 1: [0.04, 0.08]	-0.0090(93)	1.95(32)	14.2(2.6)	-	0.16
	[0]	1.640(31)	16.68(47)	-	0.56
fit 1: [0.04, 0.1]	-0.0232(50)	2.46(16)	9.9(1.1)	-	1.75
	[0]	1.754(21)	14.73(25)	-	8.54
fit $1:[0.04,0.12]$	-0.0174(31)	2.27(85)	11.32(52)	-	1.93
	[0]	1.801(16)	14.09(16)	-	9.36
fit $2:[0.04,0.16]$	-0.0044(61)	1.69(22)	19.1(2.4)	-32.9(7.6)	3.28
	[0]	1.537(29)	20.76(53)	-38.2(2.3)	2.59

$$M_{\pi}^{2} = h(m_{f}) = \begin{cases} c_{0} + c_{1}m_{f} + c_{2}m_{f}^{2} & \dots \text{ fit 1} \\ c_{0} + c_{1}m_{f} + c_{2}m_{f}^{2} + c_{3}m_{f}^{3} & \dots \text{ fit 2} \end{cases}$$

	fit range	c_0	c_1	c_2	c_3	$\chi^2/{ m dof}$
	fit 1: [0.04, 0.08]	-0.0090(93)	1.95(32)	14.2(2.6)	-	0.16
		[0]	1.640(31)	16.68(47)	-	0.56
	fit 1: [0.04, 0.1]	-0.0232(50)	2.46(16)	9.9(1.1)	-	1.75
		[0]	1.754(21)	14.73(25)	-	8.54
	fit $1:[0.04,0.12]$	-0.0174(31)	2.27(85)	11.32(52)	-	1.93
		[0]	1.801(16)	14.09(16)	-	9.36
	fit $2:[0.04,0.16]$	-0.0044(61)	1.69(22)	19.1(2.4)	-32.9(7.6)	3.28
C	range	[0]	1.537(29)	20.76(53)	-38.2(2.3)	2.59

• wide range fit ends up c₀<0

consistent with c₀=0 for small mass range

• But: $M_{\pi}/(4\pi F)\sim 2$ at lightest point \rightarrow difficult to tell real chiral behavior

Summary:

SU(3) gauge theory with N_f=12 fundamental fermion simulation with HISQ

- β =3.7, 4.0: consistent with being in the asymptotically free regime
- M_{π} , F_{π} , M_{ρ} : consistent with the finite size hyper scaling for conformal theory
- resulting γ* from different quantities, lattice spacings are consistent except
 - F_{π} at β =4.0 (m_f likely too heavy for universal mass dep. to dominate)
- need careful continuum scaling needed to get more accurate than 0.4<γ*<0.5
- real / remnant (approximate) conformal property is definitely there
- ullet could not exclude S χ SB with very small breaking scale
- even if S χ SB, γ_m too small for walking theory of phenomenological interest
- N_f=8 theory is interesting & under investigation with same lattice set up

Thank you for your attention

ChPT inspired infinite volume limit (β =3.7)

$$M_{\pi}(L) - M_{\pi} = c_{M_{\pi}} \frac{e^{-LM_{\pi}}}{(LM_{\pi})^{3/2}}$$

$$0.8 \qquad 0.05 \qquad 0.05 \qquad 0.08 \qquad 0.12 \qquad 0.12 \qquad 0.12 \qquad 0.16 \qquad 0.2$$

$$0.4 \qquad 0.4 \qquad 0$$

• ChPT type finite volume effect \rightarrow chiral fit results not inconsistent with S χ SB

HISQ action

- proposed by HPQCD collaboration for
 - smaller taste violation than other approaches
 - better handling of heavy quarks
- being used in simulations
 - MILC: Nf=2+1+1 QCD

- HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat'10 proceedings)
 - HISQ/tree is best of [HISQ/tree, Asqtad, stout]

for flavor (taste) symmetry, dispersion relation

HISQ action

- proposed by HPQCD collaboration for
 - smaller taste violation than other approaches
 - better handling of heavy quarks
- being used in simulations
 - MILC: Nf=2+1+1 QCD

Figure 2: RMS pion mass when $m_{\gamma_5} = 140$ MeV. See details in the text.

- HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat'10 proceedings)
 - HISQ/tree is best of [HISQ/tree, Asqtad, stout]

for flavor (taste) symmetry, dispersion relation

LHC (Large Hadron Collider)

- excess @ ~125 GeV
 - 1 σ level (look elsewhere)
 - larger when ATLAS & CMS results are combined ?
 - $M_W = M_Z \cos \theta_W = gF_{\pi}/2$ ($F_{\pi} = v_{weak} = 246$ GeV)
 - M_H~500 GeV: problem ?
- even if scalar is fund at ~125 GeV
 - possible techni-dilaton (Matsuzaki-Yamawaki,,)
 - 0++ glueball tends to be much lighter than techni-hadrons
 - Cf. SU(2) lattice work by Del Debbio et al
- important to investigate glueball for SU(3) as well !!!